Segmentation Based Particle Filtering for Real-Time 2D Object Tracking
نویسندگان
چکیده
We address the problem of visual tracking of arbitrary objects that undergo significant scale and appearance changes. The classical tracking methods rely on the bounding box surrounding the target object. Regardless of the tracking approach, the use of bounding box quite often introduces background information. This information propagates in time and its accumulation quite often results in drift and tracking failure. This is particularly the case with the particle filtering approach that is often used for visual tracking. However, it always uses a bounding box around the object to compute features of the particle samples. Since this causes the drift, we propose to use segmentation for sampling. Relying on segmentation and computing the colour and gradient orientation histograms from these segmented particle samples allows the tracker to easily adapt to the object’s deformations, occlusions, orientation, scale and appearance changes. We propose two particle sampling strategies based on segmentation. In the first, segmentation is done for every propagated particle sample, while in the second only the strongest particle sample is segmented. Depending on this decision there is obviously a trade-off between speed and performance. We perform an exhaustive quantitative evaluation on a number of challenging sequences and compare our method with the number of stateof-the-art methods previously evaluated on those sequences. The results we obtain outperform majority of the related work, both in terms of the performance and speed.
منابع مشابه
An Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملDensity Propagation Based Particle Filter Algorithm for Video Object Tracking
These Video object tracking is an important topic in multimedia technologies. Particle filtering has proven very successful for non-linear and non-Gaussian estimation problems. In this paper, we proposed a novel approach for video object tracking, named by Density Propagation based Particle Filter (DP-PF). Our approach exploits color histogram to capture the features from object in the video, i...
متن کاملGo with the Flow: Hand Trajectories in 3D via Clustered Scene Flow
Tracking hands and estimating their trajectories is useful in a number of tasks, including sign language recognition and human computer interaction. Hands are extremely difficult objects to track, their deformability, frequent self occlusions and motion blur cause appearance variations too great for most standard object trackers to deal with robustly. In this paper, the 3D motion field of a sce...
متن کاملUsing a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملNew Models For Real-Time Tracking Using Particle Filtering
This paper presents new methods for efficient object tracking in video sequences using multiple features and particle filtering. A histogram-based framework is used to describe the features. Histograms are useful because have the property that they allow changes in the object appearance while the histograms remain the same. Particle filtering is used because it is very robust for non-linear and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012